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Static structure factor for a colloidal dispersion with size and ‘‘charge’’ polydispersities:
Mean spherical approximation model in hard-sphere Yukawa fluids

M. Ginoza* and M. Yasutomi
Department of Physics, College of Science, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0213, Japan

~Received 13 April 1998!

An analytical model is presented of the static structure factor for a colloidal dispersion with size and
‘‘charge’’ polydispersities. The model is based on the mean spherical approximation solution of the Ornstein-
Zernike equation in a hard-sphere Yukawa fluid mixture. With the use of the model, the size- and ‘‘charge’’-
polydispersity effects are investigated on the structure, and characteristics of the effects are discussed.
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I. INTRODUCTION

Due to the mesoscopic or macroscopic nature of collo
particles, many colloidal fluids are polydisperse in si
shape, or interaction. In order to understand properties
colloids, investigation of the polydispersity effects on me
surable quantities would be essential. Since such a collo
fluid has in general a number of components as a ma
particle system, many workers have approached the fluid
analytical methods with the employment of the appropri
models. For example, with the use of analytical expressi
for static structures based on the mean spherical aprox
tion ~MSA! solution of the Ornstein-Zernike~OZ! equation,
polydispersity effects have been investigated in a polyd
perse hard-sphere fluid@1–3#, a polydisperse charged hard
sphere fluid@4#, and a polydisperse hard-sphere Yuka
~HSY! fluid @5#. In the previous paper@5#, the present author
reported the interaction polydispersity effect on the sta
structure factor in the HSY fluid consisting of same-size p
ticles. As far as the present authors are aware, no repor
been published on an extension of the paper@5# to the HSY
fluid, polydisperse in both size and interaction.

Let us consider a multicomponent HSY fluid in a volum
V with the temperatureT. The i component of the fluid con
sists ofVr i particles with diameters i and two particles ofi
and j components interact via the potentialf i j (r ) outside
hard spheres:

f i j ~r !5«0ZiZj

s0

r
e2z~r 2s i j !, s i j 5~s i1s j !/2,r ,

~1.1!

where «0 is a coupling-energy constant,s0 is an average
sphere diameter defined below, andz is a damping constant
We shall refer toZi as ‘‘charge’’ of the i species of the
particle. It should be noted, however, thatZi is a parameter
describing the interaction polydispersity, and it does
mean necessarily the real charge.

*Author to whom correspondence should be addressed: Add
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The size and ‘‘charge’’ polydispersities are represen
by distributions of the size parameters i and the ‘‘charge’’
parameterZi . As measures of the polydispersities, we defi
polydispersity parametersDs andDZ by

Ds5^s2&/s0
221, DZ5^Z2&/Z0

221, ~1.2!

where

^sn&5(
j

cjs j
n , ^Zn&5(

j
cjZj

n , s05^s&, Z05^Z&,

~1.3!

ci being the concentration of thei component defined byci
5r i /r with the total number density of spheres,r.

The aim of the paper is to present an analytical mode
the static structure factor for a colloidal dispersion with t
size and ‘‘charge’’ polydispersities and report characteris
of Ds andDZ effects on the structure. The model is based
the MSA solution of the OZ equation in the HSY flui
above. In Sec. II the analytical model of the structure fac
is presented. The polydispersity effects are discussed in S
III and IV. Section V gives a discussion.

II. MSA STRUCTURE FACTOR OF HSY FLUID

The partial structure factor related to thei and j compo-
nents,Si j (k), is calculated from the following general for
mula @4,5#:

Si j ~k!5d i j 22 Re@$ĝs~ ik !% i j #, ~2.1!

where theij element of the symmetric matrixĝs(s) is de-
fined by

$ĝs~s!% i j [
2p

s
~cicj !

1/2rg̃i j ~s! ~2.2!

with the Laplace transform defined by

g̃i j ~s![E
0

`

dr rgi j ~r !e2sr,

gi j (r ) being the partial radial distribution function. The tot
structure factorS(k) is defined by

ss
ni-
.
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PRE 59 2061STATIC STRUCTURE FACTOR FOR A COLLOIDAL . . .
S~k!5(
i j

~cicj !
1/2Si j ~k!. ~2.3!

Therefore, the calculation of the structures is reduced to
of ĝs(s). Below, we shall present MSA expressions
Si j (k) andS(k).

Now, in the HSY system corresponding to Eq.~1.1!, the
MSA for the OZ equation is defined by the closure relati

gi j ~r !50, s i j .r ,

ci j ~r !5
KZiZj

r
e2z~r 2s i j !, s i j ,r ,

whereci j (r ) is the partial direct correlation function andK
52«0s0 /kBT.

In the Baxter formalism of the OZ equation, the MS
solution is given by the Baxter functionQi j (r ) or its trans-
form Q̃i j ( is) as @6,7#

Q̃i j ~ is!5E
l j i

`

dr Qi j ~r !e2sr

5esl i j Fs i
3c1~ss i !Aj1s i

2w1~ss i !b j

1Ci j e
2zs i j S ezs i2e2ss i

s1z
2

12e2ss i

s D
1

Di j e
2zl j i

s1z G , ~2.4!
at

wherel j i 5(s j2s i)/2 and the simplest expressions of coe
ficientsAj , b j , Ci j , andDi j are @8,9#

Aj5
2p

D S 11
pz2

2D
s j D1

p

D
PNaj , ~2.5a!

b j5
p

D
s j1DNaj , ~2.5b!

Ci j 5S Zi2
Bie

2zs i /2

z Dezs i j aj , ~2.5c!

Di j 52Zie
zs i j aj . ~2.5d!

In these equations,zm5( lr ls l
m , D512h with h5pz3/6,

PN5(
l

r ls lXl2
Dz

p
DN , ~2.6a!

aj5
2G

D2
Xj , ~2.6b!

s jBje
zs j /2w0~zs j !5Xj2Zj2s jDN , ~2.6c!

where
DN5
~2p/Dz2!$l~1!@j~0!2z/22G2~pz2/2D!#2l~0!~11j~1!!%

11j~1!1~2p/Dz2!$h~1!@j~0!2z/22G2~pz2/2D!#2h~0!~11j~1!!%
, ~2.7a!
-

s-
Xj5l j2
j jl

~1!

11j~1!2DNS h j2
j jh

~1!

11j~1!D , ~2.7b!

Dm5(
l

r lXl
m ~2.7c!

with

j~n!5(
l

r ls l
nj l , h~n!5(

l
r ls l

nh l , l~n!5(
l

r ls l
nl l ,

~2.8a!

j i , h i , andl i being defined as

j i5
~p/2D!s i

2w0~zs i !

11w0~zs i !s iG
, h i5

~zs i !
2c1~zs i !s i

11w0~zs i !s iG
,

l i5
Zi

11w0~zs i !s iG
. ~2.8b!

Above, we used the functions asw0(x)5(12e2x)/x,
c1(x)5@12x/22(11x/2)e2x#/x3, and w1(x)5(12x
2e2x)/x2 and the parameterG is defined as the physical so
lution of the following nonlinear equation:

G21zG52pKD2 . ~2.9!

Now, with the use of the MSA solution, the Laplace tran
form of the OZ equation yields the following@6,7#:

(
l

2pg̃i l ~s!@d l j 2clrQ̃l j ~ is!#

5H S 11
ss i

2 DAj1sb j J e2ss i j

s2 2
z

s1z
e2~s1z!s i j Ci j .

~2.10!

Using Eq.~2.2!, Eq.~2.10! can be written in a matrix form as

ĝs~s!Q̂~ is!5L̂~s!, ~2.11!

where theij elements of the matricesQ̂( is) and L̂(s) are
defined by

$Q̂~ is!% i j [d i j 2~cicj !
1/2rQ̃i j ~ is!, ~2.12!
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L i j ~s![
~cicj !

1/2r

s
e2ss i j F H S 11

ss i

2 DAj1sb j J 1

s2

2
z

s1z
e2zs i j Ci j G . ~2.13!

From Eq.~2.11!, we get

ĝs~s!5L̂~s!R̂~s!, ~2.14!

whereR̂(s) is defined by

Q̂~ is!R̂~s!51. ~2.15!

Now, with the use of Eqs.~2.5a!–~2.5d!, Eq. ~2.13! gives

L i j ~s![~cicj !
1/2e2ss i j(

n
wi

~n!~s!a j
~n! , ~2.16!

where

a j
~1!51, ~2.17a!

a j
~2!5s j , ~2.17b!

a j
~3!5aj , ~2.17c!

wi
~1!~s!5

2pr

Ds3 S 11
ss i

2 D , ~2.18a!

wi
~2!~s!5

pr

Ds3 H s1
pz2

D S 11
ss i

2 D J , ~2.18b!

wi
~3!~s!5rH pPN

Ds3 S 11
ss i

2 D1
DN

s2

2
z

s~s1z! S Zi2
e2zs i

z
Bie

zs i /2D J , ~2.18c!

while the substitution of Eq.~2.4! into Eq.~2.12! and the use
of Eqs.~2.5a!–~2.5d! yield

$Q̂~ is!% i j 5d i j 2~cicj !
1/2esl i j(

n
Yi

~n!~s!a j
~n! , ~2.19!

where

Yi
~1!~s!5

2pr

D
s i

3c1~ss i !, ~2.20a!

Yi
~2!~s!5

pr

D H pz2

D
s i

3c1~ss i !1s i
2w1~ss i !J ,

~2.20b!
Yi
~3!~s!5rH pPN

D
s i

3c1~ss i !1DNs i
2w1~ss i !

1S Zi2
e2zs i

z
Bie

zs i /2D S ezs i2e2ss i

s1z
2

12e2ss i

s D
2

Zie
zs i

s1z J . ~2.20c!

Equations~2.15! and ~2.19! give

Ri j ~s!5d i j 1~cicj !
1/2esl i j(

n
Yi

~n!~s!L j
~n!~s!, ~2.21!

whereRi j (s) is the ij element ofR̂(s) and

L j
~n!~s![cj

21/2(
l

cl
1/2esl j l a l

~n!Rl j ~s!. ~2.22!

From Eqs.~2.21! and ~2.22!, we get

L j
~n!~s!5a j

~n!1(
m

F ~n,m!~s!L j
~m!~s!, ~2.23!

where

F ~n,m!~s!5(
i

cia i
~n!Yi

~m!~s!. ~2.24!

Therefore,

L j
~n!~s!5(

m
G~n,m!~s!a j

~m! , ~2.25!

whereG(n,m)(s) is thenmelement of matrixĜ(s) defined by

Ĝ~s!@12F̂~s!#51, ~2.26!

the nm element of matrixF̂(s) beingF (n,m)(s).
Therefore, with the substitution of Eqs.~2.16! and ~2.21!

into Eq. ~2.14! and with the use of Eqs.~2.23!, ~2.24!, and
~2.25!, we get

$ĝs~s!% i j 5~cicj !
1/2e2ss i j(

n
(
m

wi
~n!~s!G~n,m!~s!a j

~m! .

~2.27!

Substitution of Eq.~2.27! into Eq. ~2.1! gives

Si j ~k!5d i j 2~cicj !
1/22 ReFe2ss i j(

n
(
m

wi
~n!~s!G~n,m!

3~s!a j
~m!G

s5 ik

. ~2.28!

From Eqs.~2.3! and ~2.28!, we get

S~k!5122 ReF(
n

(
m

Fw
~n!~s!G~n,m!~s!Fa

~m!G
s5 ik

,

~2.29!

where
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Fw
~n!~s![(

i
cie

2ss i /2wi
~n!~s!, ~2.30a!

Fa
~n!~s![(

i
cie

2ss i /2a i
~n! . ~2.30b!

The substitutions of Eqs.~2.17a!–~2.17c! into Eq.~2.30b!
and Eqs.~2.18a!–~2.18c! into Eq. ~2.30a! give explicit ex-
pressions ofFa

(n) andFw
(n) , respectively. On the other hand

from Eq.~2.26! the expression ofG(n,m) is obtained in terms
of F (n,m), which are calculated with the substitution of Eq
~2.17a!–~2.17c! and ~2.20a!–~2.20c! into Eq. ~2.24!. Thus,
from Eqs.~2.28! and~2.29! we now obtain explicit and ana
lytical expressions of the static structure factors.

III. S„k… OF A HARD-SPHERE FLUID
WITH SCHULZ DISTRIBUTED DIAMETERS

As a special and simplest application of the model abo
we consider a polydisperse fluid consisting of hard sphe
with no interaction outside spheres. We assume that
polydispersity is intrinsic and is modeled by the Schulz d
tributed diameters: when we write the number of partic
with diameters in a domain of (s,s1ds) as Vr f (s)ds,
the Schulz distribution is defined by

f ~s!5F t11

s0
G t11 s t

t!
expS 2F t11

s0
Gs D , ~3.1!

where we assumet to be a non-negative integer ands0 is
defined by Eq.~1.3!.

Since all charge parameters are zero here,

Fa
~3!50, Fw

~3!50, F ~3,n!50, F ~n,3!50, ~3.2!

wheren51,2,3.
The component sums in the remaining elements neede

Eq. ~2.29! are easily calculated with the use of the followin

tm[
1

s0
m (

j
cjs j

m5
1

s0
m E

0

`

ds f ~s!sm

5
~ t1m!!

t! ~ t11!m , ~3.3!

f m~a![
1

s0
m (

j
cjs j

me2as j /s05
1

s0
m E

0

`

ds f ~s!sme2as/s0

5tmS 11
a

t11D 2~ t1m11!

. ~3.4!

In the last steps of calculations in Eqs.~3.3! and ~3.4!, we
used Eq.~3.1!.

From Eq.~2.30b! with Eqs.~2.17a! and ~2.17b!,

Fa
~1!5 f 0S ss0

2 D , Fa
~2!5s0f 1S ss0

2 D , ~3.5!

while from Eq.~2.30a! with Eqs.~2.18a! and ~2.18b!,
.

e,
s
e

-
s

in

Fw
~1!5

2prs0
3

D

1

~ss0!3 F f 0S ss0

2 D1
ss0

2
f 1S ss0

2 D G ,
~3.6a!

Fw
~2!5

1

s0

prs0
3

D

1

~ss0!3 F S ss01
pz2s0

D D f 0S ss0

2 D
1

pz2s0

D

ss0

2
f 1S ss0

2 D G . ~3.6b!

On the other hand, from Eq.~2.24! with Eqs. ~2.17a!,
~2.17b!, ~2.20a!, and~2.20b!,

F ~1,1!5
2prs0

3

D
f a~ss0!, ~3.7a!

F ~2,1!5s0

2prs0
3

D
f b~ss0!, ~3.7b!

F ~1,2!5
1

s0
F S p

D D 2

rz2s0
4f a~ss0!1

prs0
3

D
f c~ss0!G ,

~3.7c!

FIG. 1. Ds dependence ofS(ks0) in the case ofh50.3 and
Q50.0 ~no Yukawa-type interaction!: Ds50.0 ~curve A!, 0.1
~curveB!, 0.5 ~curveC!, and 1.0~curveD!.

FIG. 2. Ds dependence ofS(ks0) in the case ofh50.3, z*
56.0, Q522.0, andDz50.0: Ds50.0 ~curve A!, 0.1 ~curve B!,
0.5 ~curveC!, and 1.0~curveD!.
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F ~2,2!5S p

D D 2

rz2s0
4f b~ss0!1

prs0
3

D
f d~ss0!, ~3.7d!

where

f a~ss0!5
1

s0
3 (

j
cjs j

3c1~ss j !

5
1

~ss0!3 F12
ss0

2
2 f 0~ss0!2

ss0

2
f 1~ss0!G ,

~3.8a!

f b~ss0!5
1

s0
4 (

j
cjs j

4c1~ss j !

5
1

~ss0!3 F12
ss0

2
t22 f 1~ss0!2

ss0

2
f 2~ss0!G ,

~3.8b!

f c~ss0!5
1

s0
2 (

j
cjs j

2w1~ss j !

5
1

~ss0!2 @12ss02 f 0~ss0!#, ~3.8c!

f d~ss0!5
1

s0
3 (

j
cjs j

3w1~ss j !

5
1

~ss0!2 @12ss0t22 f 1~ss0!#. ~3.8d!

Note that from Eqs.~1.2! and ~3.3!,

t51/Ds21, t25Ds11, t35t2~2Ds11!. ~3.9!

As is seen from Eq.~2.29! and all equations in this sec
tion, S(k) is determined byDs and the packing fractionh:

h5rv0t3 with v05
ps0

3

6
. ~3.10!

Now, by choosing a set of parameters (h,Ds), we can in-
vestigate the size-polydispersity effect onS(k).

Figure 1 shows the dependence ofS(k) on Ds in the case
of h50.3 ~andQ50.0!: Ds50.0 ~curveA!, 0.1 ~curveB!,
0.5 ~curve C!, and 1.0~curve D!. We investigated theDs

dependences for various values ofh, and obtained basically
the same behaviors as in Ref.@3#. See also Fig. 2.

IV. POLYDISPERSITY EFFECTS IN HSY FLUID

In this section, we consider the HSY fluid with the intrin
sic size and ‘‘charge’’ polydispersities. We assume the fl
to be described by a model in which the distribution of t
diameters and the charges is given by a distribution func
f (s,Z), where we write the number of particles having d
ameters and charges in domains of (s,s1ds) and (Z,Z
1dZ), respectively, asVr f (s,Z)ds dZ. The function is
thus non-negative and satisfies the following normalizat
condition:
d

n

n

E
0

`

dsE
2`

`

dZ f~s,Z!51.

When the number of particles having diameters in a dom
of (s,s1ds) regardless of ‘‘charges’’ is written a
Vr f (s)ds, f (s) is given as follows:

f ~s!5E
2`

`

dZ f~s,Z!.

Here, for f (s) we employ the Schulz distribution func
tion @Eq. ~3.1!#. Thus, all the equations except Eq.~3.2! in
the preceding section are satisfied in this section as well
for the counterparts of the elements of Eq.~3.2!, the compo-
nent sums may be somewhat difficult, as is seen from E
~2.17c!, ~2.18c!, and~2.20c! with Eqs.~2.6a!–~2.6c!, ~2.7a!–
~2.7c!, ~2.8a!, ~2.8b!, and ~2.9!. Since we need detailed
knowledge off (s,Z) in order to go forward, we assume he
the following uncorrelated case:

f ~s,Z!5 f ~s! f 1~Z!, ~4.1!

where f 1(Z) is a distribution function of ‘‘charges.’’ As a
result, in this caseS(k) does not depend on any more det

FIG. 3. Dz dependence ofS(ks0) in the case ofh50.3,
z* 56.0, Q522.0, and Ds50.0: Dz50.0 ~solid line!, 0.1
~dashed line!, 0.2 ~dotted line!.

FIG. 4. Dz dependence ofS(ks0) in the case ofh50.3,
z* 56.0, Q522.0 and Ds50.1: Dz50.0 ~solid line!, 0.1
~dashed line!, 0.2 ~dotted line!.
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of the functional form off 1(Z) @5,10,11#. The most difficult
thing is the determination ofG by solving Eq. ~2.9! self-
consistently, which is concerned with the following type
component sums@11#:

I lm~n!5E
0

`

dx f~s0x!xn
@xw0~z* x!# l

@11xw0~z* x!G* #m ,

wheren, l, andm are appropriate integers andx5s/s0 . In a
previous paper@11#, we treated this integral with the use o
the approximation forzs0@1. Since we consider the case
of zs052.0 andzs056.0 below, however, we calculate th
integrals above numerically by computer.

As is seen from the expressions above,S(k) is specified
by a parameter set of (h,Ds ,Q,z* ,DZ), whereQ andz* are
defined as

Q5«0Z0
2/kBT, z* 5zs0 . ~4.2!

Now, we can investigate the polydispersity effects by cho
ing various sets, and below we shall investigate the effect
the case ofh50.3: a typical value for a concentrated colloi

Let us investigateS(k) of the HSY fluid interacting at-
tractively with Q522.0 andz* 56.0. Figure 2 showsDs

dependences ofS(k) in the case ofDz50.0: Ds50.0
~curve A!, 0.1 ~curve B!, 0.5 ~curve C!, and 1.0~curve D!.
Comparing the behavior in Fig. 2 with that in Fig. 1, we s
that ~i! Ds dependences ofS(k) in both cases are qualita
tively the same, and~ii ! the Yukawa interaction~Q effect!
makesS(k) go up in the lowk part and makes the position
of maxima and minima ofS(k) shift slightly toward higher
values ofk. TheDz dependences ofS(k) are shown in Fig. 3
for Ds50.0 and in Fig. 4 forDs50.1: DZ50.0 ~solid
line!, 0.1 ~dashed line!, 0.2 ~dotted line!. The figures show
that the behaviors ofS(k) due to the increase ofDz are
qualitatively the same in both figures and the lowk part of
S(k) goes up asDz increases.

As for theDz dependences ofS(k) of the HSY fluid with
repulsive interaction~Q514.0 andz* 52.0!, the Dz depen-
dences are shown in Fig. 5 forDs50.1: Dz50.0 ~solid
line!, 0.1 ~dashed line!, 0.2 ~dotted line!. For Ds50.0, we
refer to figure 1 in Ref.@5#. From the figures, we see that th
behaviors ofS(k) due to the increase ofDz are qualitatively

FIG. 5. Dz dependence ofS(ks0) in the case ofh50.3,
z* 52.0, Q514.0, andDs50.1: Dz50.0 ~solid line!, 0.1 ~dashed
line!, 0.2 ~dotted line!.
-
in

the same, and asDz increases,~i! the lowk part ofS(k) goes
up, ~ii ! the height of the first peak ofS(k) goes down, and
~iii ! the positions of the maxima and minima ofS(k) are
shifted slightly toward higher values ofk.

As is seen from the comparison of theDz effects in Figs.
3, 4, and 5 with theDs effects in Figs. 1 and 2, the interac
tion polydispersity has weaker effects onS(k) than the size
polydispersity. This conclusion is consistent with the conje
ture by Senatore and Blum@4#.

V. DISCUSSION

As in previous papers@5,10,11#, we introduced the multi-
component HSY fluid consisting of particles interactin
through Eq.~1.1! as a model system of the colloidal dispe
sion with the size and ‘‘charge’’ polydispersities. In th
model system, we presented the explicit and analytical
pressions of the static structure factors,Si j (k) and S(k),
which are given by Eqs.~2.28! and~2.29!. It should be noted
that the expressions are applicable to the HSY fluid with
arbitrary number of components and tractable even in s
intrinsic polydisperse fluid as in Sec. IV. The expression@Eq.
~2.29!# thus can be given a role as an analytical model for
colloidal dispersion. In this paper, the size and ‘‘charg
polydispersities are described by the distribution funct
f (s,Z), and Eqs.~4.1! and~3.1! are assumed forf (s,Z) and
f (s), respectively, in order to investigate the polydispers
effects onS(k).

The polydisperse Percus-Yevick hard-sphere fluid w
considered by many workers@1–3#. Blum and Stell@2# gave
the analytical structure factor, and by calculating the str
ture factor in the case of the Schulz distributed diamete
Griffith et al. @3# discussed the polydispersity effect. Th
polydisperse Percus-Yevich fluid corresponds to the spe
case of our model with no Yukawa interaction which w
discussed in Sec. III. It should be emphasized that the
plicit and analytical expression ofS(k) obtained is extremely
simple: as is seen from Eqs.~3.4!, ~3.6a!, ~3.6b!, ~3.7a!–
~3.7d!, and ~3.8a!–~3.8d!, the expression is written in term
of the first three simple basic functions,f m(a) (m50,1,2).
In order to mention the dependence ofS(k) on moments of
the Schulz distribution function, let us consider the mom
expansion off m(a); it is easily obtained from Eq.~3.4! as

f m~a!5 (
n50

`
~21!nan

n!
tn1m ,

wheretn1m is the nondimensional (n1m)th moment defined
by Eq. ~3.3!. The expansion shows thatS(k) depends on all
the moments in the case ofkÞ0. As for the moment depen
dence in the case ofk→0, S(k) depends only ontm for m
50,1,2,3 sincef m(0)5tm andh5rv0t3 . This conclusion is
consistent with that of the MSA or PY treatment of therm
dynamical properties of the polydisperse hard-sphere fl
@12#.

In this paper, we investigated the polydispersity effects
the special case that size and ‘‘charge’’ distributions are
correlated and described by Eq.~4.1!. In a charge-stabilized
colloid as an example, however, the amount of ‘‘charge’’
a colloidal particle would depend in general on its size:
assumption has been employed that the distributions of s
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and ‘‘charges’’ are strongly correlated in such a way that
‘‘charge’’ on a colloidal particle is proportional to the squa
of its diameter. In the context of the model in Sec. IV, th
assumption means the following choice forf (s,Z):

f ~s,Z!5 f ~s!d~Z2Z0s2/^s2&!.

D’Aguanno and Klein@13# considered the HSY fluids con
sisting of colloidal particles with continuous size and cha
distributions. They described the size distribution in terms
the Schulz function and discussed the description of
e

e
f
e

polydispersity by means of the reduction of the continuo
distributions to three components. In the present mo
however, we can directly consider the continuous distrib
tions described by the function above. This is one of o
forthcoming works.
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