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Static structure factor for a colloidal dispersion with size and *“charge” polydispersities:
Mean spherical approximation model in hard-sphere Yukawa fluids

M. Ginoz& and M. Yasutomi
Department of Physics, College of Science, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0213, Japan
(Received 13 April 1998

An analytical model is presented of the static structure factor for a colloidal dispersion with size and
“charge” polydispersities. The model is based on the mean spherical approximation solution of the Ornstein-
Zernike equation in a hard-sphere Yukawa fluid mixture. With the use of the model, the size- and “charge”-
polydispersity effects are investigated on the structure, and characteristics of the effects are discussed.
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PACS numbe(s): 82.70.Kj, 61.20.Gy

[. INTRODUCTION The size and ‘“charge” polydispersities are represented
by distributions of the size parameter and the “charge”
Due to the mesoscopic or macroscopic nature of colloidaparamete?; . As measures of the polydispersities, we define
particles, many colloidal fluids are polydisperse in size,polydispersity parameteifd, andD, by
shape, or interaction. In order to understand properties of
colloids, investigation of the polydispersity effects on mea- D,=(c?)/o§—1, D,=(Z*IZ5~1, (1.2
surable quantities would be essential. Since such a colloidal
fluid has in general a number of components as a many¥here
particle system, many workers have approached the fluid by

analytical methods with the employment of the approprlate<0n> 2 C: U] (ZM = 2 ¢ J . oo={(0), Zy=(2),
models. For example, with the use of analytical expressions
for static structures based on the mean spherical aproxima- (1.3

tion (MSA) solution of the Ornstein-Zernik@>Z) equation,
polydispersity effects have been investigated in a polydis-
perse hard-sphere fluid—3], a polydisperse charged hard- =pi/p with the total number density of sphergs,

sphere fluid[4], and a polydisperse hard-sphere Yukawa The aim of the paper is to present an analytical model of

(HSY) i[5} I th previous papgs) e present authors 12 AL Suctre sty o 2 oloid) dspersion wit e
reported the interaction polydispersity effect on the statlc fD andDZ effects on the structure. The model is based on

structure factor in the HSY fluid consisting of same-size par-

ticles. As far as the present authors are aware, no report hé MSA solution of the OZ equation in the HSY fluid

been published on an extension of the pdiaito the HSY above. In Sec. Il the analytical model of the structure factor

fluid, polydisperse in both size and interaction is presented. The polydispersity effects are discussed in Secs.
Let us consider a multicomponent HSY fluid in a volume Il and IV. Section V gives a discussion.

V with the temperaturd. Thei component of the fluid con-

¢; being the concentration of thiecomponent defined by,

sists ofVp; particles with diametes; and two particles of Il. MSA STRUCTURE FACTOR OF HSY FLUID
and j components interact via the potenti@l;(r) outside The partial structure factor related to thandj compo-
hard spheres: nents,S;;(k), is calculated from the following general for-
mula[4,5]:
90 _sr—g a g
¢ij(r):802iZjTe Ar=oip) gy = (ot op)2<r, Sij(K)=6ij — 2 R { ¥s(ik) }ij 1, (2.1
(1.1)

where theij element of the symmetric matri¥s(s) is de-
fined by

where g, is a coupling-energy constant;, is an average

sphere diameter defined below, anid a damping constant. . 27 12 ~

We shall refer toZ; as “charge” of thei species of the {Ys(S)}u':?(CiCj) i (s) 22
particle. It should be noted, however, ttitis a parameter

describing the interaction polydispersity, and it does notwith the Laplace transform defined by

mean necessarily the real charge.

gij(s)zvf:drrgij(r)eisr,

*Author to whom correspondence should be addressed: Address
correspondence to Department of Physics, College of Science, Unij; (1) being the partial radial distribution function. The total
versity of the Ryukyus, Nishihara-Cho, Okinawa 903-0213, Japanstructure factoiS(k) is defined by
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wherel ;= (o;—0;)/2 and the simplest expressions of coef-

S<k>=; (cicp)M2s;(k). (23 ficientsA, B;, C;;, andD;; are[8,9]
Therefore, the calculation of the structures is reduced to that om e -
of %4(s). Below, we shall present MSA expressions of Aj:T 1+ Z_Azo-j)+KPNaj' (2.53
Sij(k) and S(k).
Now, in the HSY system corresponding to Ed.1), the
MSA for the OZ equation is defined by the closure relation T
Bj:K(Tj‘f'ANaj, (25b)
gij(r)=0, aj>r,
Kziz, = 202
Cij(l’): i Je z(r 0'”)' O-ij<r1 CijZ(Zi—Ble ezoijaj’ (25(:)
wherec;;(r) is the partial direct correlation function arkd
= —&o00/KgT. D;j=—Ze%ia. (2.50

In the Baxter formalism of the OZ equation, the MSA
solution is given by the Baxter functio@;;(r) or its trans-

~ 1 = m = —_ I =
form O (is) as[6,7] In these equationg;,=Z,p;0", A=1— 7 with »=m{3/6,

Ou(is)= | drq(nes Az
dytis)= | aroym Pu-3 b~ L, (263
=eNi ‘Tislﬂl(SUi)AjJFUizGDl(SUi)ﬁj or
2 2.6
e e aJ D2 | ( )
+Cjje Z”ii( -
s+z S 012 —
_a 0iBj€"%po(z0j)=X;~Zj—0jAy, (269
Djje” i 24
* stz | @4 where
|
(2 ANV O —2/2—T — (7 {o120) ] - N O (1+ D) 2.73

ATy EV+2mAZ) V[0 —212—T — (7{o20)]— 5 O(1+ 1)}

—e)/x? and the parametdr is defined as the physical so-

£ gV
- N( 7 : (2.70  |ution of the following nonlinear equation:

14D

I'?+zI'=—7KD,. (2.9
_ m
Om Z pIXi .79 Now, with the use of the MSA solution, the Laplace trans-
form of the OZ equation yields the following,7]:
with

> 278 (s)[ 8 —c1pQy(is)]
é(”)=2l piolé, n(“)=2 pion, Mm:? pioT\|, ! J ]

ST e Y% Z
(283 :{ 1+7| AJ+SIBJ T_me—(s-%—z)aijcij .
&, m, and\; being defined as 2.10
2
_(ml2M)afeo(z0)  (z07)*Ya(z07)0; Using Eq.(2.2), Eq.(2.10 can be written in a matrix form as
' 1+ ¢p(zo))oT KU eo(zoy) o’
¥s(s)Q(is)=A(s), (2.1
Z:
\i ' (2.80)

where theij elements of the matrice®(is) and A(s) are
defined by

T 1t gg(zaal

Above, we used the functions agy(x)=(1—e *)/x, . 3
Yr()=[1—x2—(1+x/2)e7*]/x%, and @(x)=(1—x {QUis)}ij= &;— (cic))"?pQyj (is), (212
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Ci(;_)1/2 so; 1
A”(S)E—( JS pe_so—ij|: (l‘l‘% AJ+Sﬁ]}§2
z
— me—zaijcij}_ (2.13)
From Eqg.(2.11), we get
¥5(s)=A(s)R(s), (2.14
whereR(s) is defined by
Q(is)R(s)=1. (2.15

Now, with the use of Eq942.58—(2.5d), Eq.(2.13 gives

Aij(s)s(cicj)”?e*s"u; wV(s)al”, (216
where

aV=1, (2.173

a}z)zaj , (2.179

a¥=a, (2.170

wit(s)= ZA%(H S%) (2.183

2 TP e SO
W (S)—Eg S+T(1+7)], (2.18b
w200 o] 328 152 4 2

—Zoj

z
" s(s+z2)

g

Biez“i/z) ] (2.189

while the substitution of Eq2.4) into Eq.(2.12) and the use
of Eqgs.(2.58—(2.50 yield

{Q(is)}ij= & —(cicp)Ye™i Y YV(s)a{", (2.19

where

p

Yl(l)(s): 2%0’?1#1(50]), (2203

Yi2(9)= W—gza?wﬂsm)w?%(soi)},

A
(2.20b
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’7TPN
Yi(s)(s):lJ TU?¢1(SUi)+ANUi2§Dl(SUi)
e*Z(Ti 2 eZ(Ti _ e*S(Ti 1 _ 67 Soj
+|z— Biezoi —
z s+z S
Z,e™i
“ izl (2.209

Equations(2.15 and(2.19 give
Rij(s)= 3+ (cic)¥%e™i X, YV (s)L{"(s), (2.2

whereR;;(s) is theij element ofR(s) and

L}n)(S)EC;UZZ Clllzesx“afn)R”(s)_ (2.22
From Egs.(2.21) and(2.22), we get
|_§“>(s)=a}“>+§ Fm(s)LiM(s),  (2.23
where
|:<rwﬂ>(s)=2i ciaMYi™(s). (2.24
Therefore,
L"(9)=2 GI"M(s)af™, (229

whereG(™M(s) is thenmelement of matrixG(s) defined by

G(s)[1-F(s)]=1, (2.26

the nm element of matrix=(s) being F(™™(s).

Therefore, with the substitution of Eq.16 and(2.21)
into Eqg. (2.14 and with the use of Eqg2.23, (2.24), and
(2.25, we get

{'A)’s(s)}ij _ (Cicj)llze—SUijE 2 Wi(n)(S)G(n’m)(S)afm) )
n m
(2.29
Substitution of Eq(2.27) into Eg.(2.1) gives

S;(k)=38;—(cic)) 22 Re{e‘s"ijz > wV(s)Gnm

x(s)aj™ (2.28
s=ik
From Egs.(2.3) and(2.28, we get
S(k)=1-2 R{E 2 F(GMM(FM|
n m —ik
* 229

where
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2.0
FM(s)=2 cie™s"w("(s), (2.303
i n =03
L5} 0 =00
FM(s)=2, cie %", (2.30h 2 A
! =< 1.0 + D
N . v A:Dg=0.0
The substitutions of Eq$2.179—(2.179 into Eq.(2.30b B: Do=0.1
and Egs.(2.189—(2.189 into Eq. (2.309 give explicit ex- 05 B C:D=0.5
pressions of "V andF{" , respectively. On the other hand, D:De=1.0
from Eq.(2.26 the expression o&(™™ s obtained in terms 0.0 A L
of F(™™ which are calculated with the substitution of Egs. o0 50 100 15.0 20.0
(2.173—(2.179 and (2.208—(2.200 into Eq. (2.24. Thus,
from Egs.(2.28 and(2.29 we now obtain explicit and ana- ko,

lytical expressions of the static structure factors. FIG. 1. D, dependence o8(koy) in the case ofy=0.3 and

®=0.0 (no Yukawa-type interaction D,=0.0 (curve A), 0.1
. S(k) OF A HARD-SPHERE FLUID (curveB), 0.5 (curveC), and 1.0(curve D).
WITH SCHULZ DISTRIBUTED DIAMETERS

As a special and simplest application of the model above, F(l)ZZWPUg 1 f (% . ﬁf Sog
we consider a polydisperse fluid consisting of hard spheres w A (sog)®| O 2 2 Ho2]/p
with no interaction outside spheres. We assume that the (3.63
polydispersity is intrinsic and is modeled by the Schulz dis-
tributed diameters: when we write the number of particles , 1 ngg 1 w0 so
with diameters in a domain ofo(,oc+do) as Vpf(o)do, FfN):U— A (sog)? (SUo+ T)fO(T)
the Schulz distribution is defined by 0 0
T(r00 SO So
t+1]1*1 ot t+1 + gj °7°f1(7°) . (3.60
f(a')= 0_—0 t—lexp< - 0'), (31)

On the other hand, from Eq(2.24 with Egs. (2.173,
where we assumeto be a non-negative integer amg is  (2.17h, (2.203, and(2.20D),
defined by Eq(1.3).

Since all charge parameters are zero here, 2mpoy
FOY= fa(soo), (3.79
F¥=0, FY’=0, F®V=0, F"¥=0, (3.2
wheren=1,2,3 (2,9 ZTFPUS
2,3, Fleb=g, fo(sSayg), (3.7b

The component sums in the remaining elements needed in

Eq.(2.29 are easily calculated with the use of the following:
3

1[[\? TP,
1 1 (= Fla=— (—) ogfJ(sog) + —— f (S0, },
tmE—mz CJO’;n _mf do’f(o’)a’m oo A ng 0 a( 0) A C( 0)
0o | 0p Jo (3.709
(t+m)! 3.3
G 49
1 ma—ao; / 1 —aol
f(a)=— >, cjoj'e 2% ”Oz—mj do f(o)cMe 2770
0o | 0p JO ’g
a |- (tFmel) %
=ty 1+ m (3.9
In the last steps of calculations in Eg8.3) and (3.4), we
used Eq.(3.1).
From Eq.(2.30h with Egs.(2.178d and (2.17h), 20.0
so so
Fiyl)zfo(_o)7 F@=0of; _0), (3.5 .
2 2 FIG. 2. D, dependence o8(koy) in the case ofp=0.3, z*

=6.0,0=-2.0, andD,=0.0: D,=0.0 (curve A), 0.1 (curve B),
while from Eg.(2.309 with Egs.(2.189 and (2.18h), 0.5 (curveC), and 1.0(curveD).
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-2 B 2.0
F(Z’Z)Z(K) pLaogfy(Sog)+ de(SUo), (3.70 I n =03
0 =20
where
1 . ]
fa(sop) = 0_8; Cjo} 1(say) 54
1 SO'O S(TO
= (s09)? 1-5- fo(sog) — Tfl(SUo) ,
0.0 ' — :
(3.89 0.0 5.0 10.0 15.0 20.0

1
fb(SUO):?E CjO'fllfl(SUj)
0/ FIG. 3. D, dependence ofS(kay) in the case of%=0.3,
z*=6.0, ®=-2.0, and D,=0.0: D,=0.0 (solid line), 0.1
, (dashed ling 0.2 (dotted ling.

1

. S(TQ 50'0
(s00)*

1- TtZ_fl(SO'O)_ > fa(soy)

(3.8b f:dgﬁ;dz f(0,2)=1.

1
fo(S00)= —5 >, Ciole,(So
(570 5 EJ: i) #1(573) When the number of particles having diameters in a domain

of (o,0+do) regardless of ‘“charges” is written as

= (S;)z[l_SUo—fo(SUo)]a (3.80 Vpf(o)da, f(o) is given as follows:
g0

1 f(O’):f dZ f(o,2).
fa(sog) = ;g; CjUjs@l(SUj) —

Here, for f(o) we employ the Schulz distribution func-
tion [Eqg. (3.1)]. Thus, all the equations except E.2) in
the preceding section are satisfied in this section as well. As
for the counterparts of the elements of E8.2), the compo-
Note that from Eqgs(1.2) and(3.3), nent sums may be somewhat difficult, as is seen from Egs.

(2.179, (2.180, and(2.209 with Egs.(2.6a—(2.60, (2.79—
t=1D,~1, t,=D,+1, t3=1;(2D,+1). (3.9 (2.79, (2.8a, (2.8b, and (2.9). Since we need detailed

knowledge off (¢,Z) in order to go forward, we assume here
the following uncorrelated case:

1
:—2(30'0) [1—30'0t2_f1(30'0)]. (380)

As is seen from EQq(2.29 and all equations in this sec-
tion, S(k) is determined byD, and the packing fractiom:
) h 770'8 (3.10 f(o,2)=1(0)f1(2), 4.1
n=pv with vg=——. .
poote 6 where f,(Z) is a distribution function of “charges.” As a

, . result, in this cas&(k) does not depend on any more detail
Now, by choosing a set of parameters,D,), we can in-

vestigate the size-polydispersity effect (k). 20
Figure 1 shows the dependenceSgk) on D, in the case N =03
of »=0.3(and®=0.0: D, =0.0(curveA), 0.1(curveB), ! o =_’2.0
0.5 (curve C), and 1.0(curve D). We investigated th® , L5 ¢ 25 =6.0
dependences for various valuesgfand obtained basically Ds=0.1
the same behaviors as in REB]. See also Fig. 2. ;/@ ;
7 ——:D,=00
IV. POLYDISPERSITY EFFECTS IN HSY FLUID ————:D,=0.1
In this section, we consider the HSY fluid with the intrin- D202
sic size and “charge” polydispersities. We assume the fluid
to be described by a model in which the distribution of the 0.0 . . . ' : :
diameters and the charges is given by a distribution function 0.0 5.0 10.0 15.0 200
f(o,Z), where we write the number of particles having di- ko
ameters and charges in domains of,§+do) and (Z,Z 0
+dZ), respectively, asVpf(o,Z)dodZ. The function is FIG. 4. D, dependence ofS(koy) in the case ofn=0.3,

thus non-negative and satisfies the following normalizatiors*=6.0, ®=-2.0 and D,=0.1: D,=0.0 (solid ling), 0.1
condition: (dashed ling 0.2 (dotted ling.
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S(koy)

10.0

20.0
ko,

FIG. 5. D, dependence ofS(kay) in the case of»=0.3,
z*=2.0,0=14.0, andD ,=0.1: D,=0.0 (solid line), 0.1 (dashed
line), 0.2 (dotted ling.

of the functional form off;(Z) [5,10,11. The most difficult
thing is the determination of by solving Eq.(2.9 self-
consistently, which is concerned with the following type of
component sumgl1]:

(= [

wheren, |, andm are appropriate integers arek o/ 0. In a
previous papef11], we treated this integral with the use of
the approximation fozoy>1. Since we consider the cases
of zoy=2.0 andzoy=6.0 below, however, we calculate the
integrals above numerically by computer.

As is seen from the expressions abo8) is specified
by a parameter set off, D ,0,z* ,D,), where® andz* are
defined as

[X¢o(z*X)]'
[1+X@o(Zx)I* ™

dx f(aex)x"

0=50Z%kgT, Z*=2z0,. (4.2
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the same, and d3, increases(i) the lowk part of S(k) goes
up, (i) the height of the first peak d¥(k) goes down, and
(iii) the positions of the maxima and minima 8fk) are
shifted slightly toward higher values &f

As is seen from the comparison of tbg effects in Figs.
3, 4, and 5 with thé , effects in Figs. 1 and 2, the interac-
tion polydispersity has weaker effects 8¢k) than the size
polydispersity. This conclusion is consistent with the conjec-
ture by Senatore and Bluf].

V. DISCUSSION

As in previous paperfb,10,11, we introduced the multi-
component HSY fluid consisting of particles interacting
through Eq.(1.1) as a model system of the colloidal disper-
sion with the size and “charge” polydispersities. In the
model system, we presented the explicit and analytical ex-
pressions of the static structure facto&;(k) and S(k),
which are given by Eqg2.28 and(2.29. It should be noted
that the expressions are applicable to the HSY fluid with an
arbitrary number of components and tractable even in such
intrinsic polydisperse fluid as in Sec. IV. The expresgigg.
(2.29] thus can be given a role as an analytical model for the
colloidal dispersion. In this paper, the size and ‘“charge”
polydispersities are described by the distribution function
f(o,2), and Egs(4.1) and(3.1) are assumed fdi(o,Z) and
f(o), respectively, in order to investigate the polydispersity
effects onS(k).

The polydisperse Percus-Yevick hard-sphere fluid was
considered by many workef4&—3]. Blum and Stel[2] gave
the analytical structure factor, and by calculating the struc-
ture factor in the case of the Schulz distributed diameters,
Griffith et al. [3] discussed the polydispersity effect. This
polydisperse Percus-Yevich fluid corresponds to the special
case of our model with no Yukawa interaction which was
discussed in Sec. lll. It should be emphasized that the ex-
plicit and analytical expression &k) obtained is extremely

Now, we can investigate the polydispersity effects by choossimple: as is seen from Eg$3.4), (3.6a, (3.6b, (3.7a—
ing various sets, and below we shall investigate the effects i§3.70, and(3.88—(3.8d), the expression is written in terms

the case ofy=0.3: a typical value for a concentrated colloid.
Let us investigateS(k) of the HSY fluid interacting at-
tractively with ®=—2.0 andz* =6.0. Figure 2 show®
dependences o8(k) in the case ofD,=0.0: D,=0.0
(curve A), 0.1 (curve B), 0.5 (curve C), and 1.0(curve D).

Comparing the behavior in Fig. 2 with that in Fig. 1, we see

that (i) D, dependences d(k) in both cases are qualita-
tively the same, andii) the Yukawa interactiof® effect
makesS(k) go up in the lowk part and makes the positions
of maxima and minima of(k) shift slightly toward higher
values ofk. TheD, dependences @&(k) are shown in Fig. 3
for D,=0.0 and in Fig. 4 forD,=0.1: D,=0.0 (solid
line), 0.1 (dashed ling 0.2 (dotted ling. The figures show
that the behaviors of(k) due to the increase db, are
qualitatively the same in both figures and the lkwart of
S(k) goes up a®, increases.

As for theD, dependences @&(k) of the HSY fluid with
repulsive interactio® = 14.0 andz* =2.0), the D, depen-
dences are shown in Fig. 5 f@®@,=0.1: D,=0.0 (solid
line), 0.1 (dashed ling 0.2 (dotted ling. For D,=0.0, we
refer to figure 1 in Ref[5]. From the figures, we see that the
behaviors ofS(k) due to the increase @, are qualitatively

of the first three simple basic functionf,(a) (m=0,1,2).

In order to mention the dependenceS{k) on moments of
the Schulz distribution function, let us consider the moment
expansion off(a); it is easily obtained from Eq3.4) as

o

fm(@)= 2,

n=0

(_ 1)nan
T n+ms

wheret,, ., , is the nondimensionah(+ m)th moment defined

by Eg.(3.3). The expansion shows th&k) depends on all

the moments in the case kf~0. As for the moment depen-
dence in the case &—0, S(k) depends only on,, for m
=0,1,2,3 sincd ,(0)=t,, and = pvgt3. This conclusion is
consistent with that of the MSA or PY treatment of thermo-
dynamical properties of the polydisperse hard-sphere fluid
[12].

In this paper, we investigated the polydispersity effects in
the special case that size and “charge” distributions are un-
correlated and described by Ed.1). In a charge-stabilized
colloid as an example, however, the amount of “charge” on
a colloidal particle would depend in general on its size: the
assumption has been employed that the distributions of sizes



2066 M. GINOZA AND M. YASUTOMI PRE 59

and “charges” are strongly correlated in such a way that thepolydispersity by means of the reduction of the continuous
“charge” on a colloidal particle is proportional to the square distributions to three components. In the present model,
of its diameter. In the context of the model in Sec. IV, thishowever, we can directly consider the continuous distribu-
assumption means the following choice fdior,Z): tions described by the function above. This is one of our

forthcoming works.
f(0,2)=1(0)8(Z—Zyo?l{0?)).
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